Toxicokinetics of pristine and aged silver nanoparticles in freshwater benthic organisms: the role of exposure route

Patrícia V. Silva^{*1}, Cornelis A. M. van Gestel², Rudo A. Verweij² and Susana Loureiro¹

¹Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal ²Department of Ecological Science, Faculty of Science, Vrije Universiteit Amsterdam, The Netherlands

*e-mail to: pverissimo@ua.pt

Introduction

- \checkmark Nanomaterials (NMs) may undergo several physical-chemical changes during their life-cycle, and can reach biological receptors in unpredictable forms \rightarrow this can determine their biological fate through different uptake routes.
- ✓ **Toxicokinetic studies** may help understanding and assessing NM bioavailability, ways of uptake/elimination and biological fate.

Objective

Determine toxicokinetics of silver nanoparticles, in their pristine (Ag-NPs; 3-8 nm, 50 nm and 60 nm) and simulated aged form (Ag₂S-NP), through different exposure routes, in freshwater

 \checkmark In freshwater systems, **benthic organisms** can be exposed to NMs through water and sediment and therefore different routes of uptake NMs are expected.

benthic organisms.

Material and Methods

Results

Contaminated water (no sediment)

Contaminated water (with sediment)

Tables 1 and 2. Kinetics parameters of Ag forms in *Physa*

Contaminated sediment

300

The three graphs show the uptake and elimination kinetics of Ag forms in Physa acuta soft body samples. Lines represent the fit of a one-compartment model to the data.

Table 2			
Ag form	k1 (g _{sediment} .g ⁻¹ organism.day ⁻¹)	k2 (day ⁻¹)	SF
3-8 nm	7.24 (-19.5-33.97)	2.01 (-8.63-12.64)	0.22
50 nm	2.34 (1.43-3.25)	0.001 (-)	1
60 nm	2.03 (1.38-2.69)	0.003 (-)	1
Ag ₂ S-NP	8.31 (-)	18.11 (-)	0.04
AgNO₃	2.98 (-0.18-6.13)	0.11 (-0.84-1.06)	0

Planarians showed very little to no uptake.

- \checkmark In exposures to contaminated water and clean sediment, the Ag background concentration in sediment increased in time while Ag concentration in water decreased, due to Ag association with the sediment \rightarrow kinetics were modelled considering changes in Ag concentration in both media, adapting the model described in Van den Brink et al. (2019).
- ✓ In this model, a stored fraction (SF) is included in equations for both the uptake and elimination phase, assuming that Ag storage is a biological process also occurring during the uptake phase.

Discussion and Conclusions

- When considering water and sediment Ag concentrations in the model, uptake rate constants (k1) were in general higher for water uptake.
 - > Ag concentrations in water and sediment (sediment background concentration increasing in time) reached very similar values -> water exposure more relevant in uptake than sediment.
- \checkmark Higher k1 values in sediment exposures, probably due to higher exposure concentrations.
- Similar uptake patterns were observed for different Ag forms in snails from water exposures, uptake being higher for Ag 60 nm and AgNO₃, possibly related to their higher dissolution. In the sediment exposure, all Ag forms presented similar uptake rates, except for Ag₂S-NP \rightarrow exposure route may influence uptake.
- \checkmark In general, higher uptake rate constants for snails exposed to Ag₂S-NPs, AgNO₃ and Ag-NPs 3-8 nm and 50 nm, suggesting that NP form is also determining uptake.
- ✓ Planarians revealed very little to no uptake when exposed through contaminated water. These organisms secrete mucus that can act as a defense mechanism against the entrance of contaminants. Exposures to higher concentrations should be performed.
- ✓ Results suggest that different exposure routes may lead to different uptake rates and that the NP form is also determining Ag uptake.

Acknowledgments

Thanks are due for the financial support to CESAM (UID/AMB/50017/2019), to FCT/MEC through national funds. This work was supported by the project NanoFASE, financed by the European Union's Horizon 2020 research and innovation programme under grant agreement No 646002, and through a doctoral grant to Patrícia Veríssimo Silva (SFRH/BD/52571/2014) by FCT - Fundação para a Ciência e a Tecnologia.

